首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29838篇
  免费   2280篇
  国内免费   1763篇
  2023年   341篇
  2022年   387篇
  2021年   1346篇
  2020年   1021篇
  2019年   1260篇
  2018年   1232篇
  2017年   877篇
  2016年   1286篇
  2015年   1984篇
  2014年   2234篇
  2013年   2414篇
  2012年   2747篇
  2011年   2428篇
  2010年   1532篇
  2009年   1299篇
  2008年   1591篇
  2007年   1418篇
  2006年   1236篇
  2005年   1044篇
  2004年   853篇
  2003年   745篇
  2002年   580篇
  2001年   489篇
  2000年   380篇
  1999年   426篇
  1998年   244篇
  1997年   264篇
  1996年   257篇
  1995年   223篇
  1994年   222篇
  1993年   153篇
  1992年   218篇
  1991年   191篇
  1990年   133篇
  1989年   106篇
  1988年   79篇
  1987年   108篇
  1986年   82篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1977年   16篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Many computational methods have been developed to discern intratumor heterogeneity (ITH) using DNA sequence data from bulk tumor samples. These methods share an assumption that two mutations arise from the same subclone if they have similar mutant allele-frequencies (MAFs), and thus it is difficult or impossible to distinguish two subclones with similar MAFs. Single-cell DNA sequencing (scDNA-seq) data can be very informative for ITH inference. However, due to the difficulty of DNA amplification, scDNA-seq data are often very noisy. A promising new study design is to collect both bulk and single-cell DNA-seq data and jointly analyze them to mitigate the limitations of each data type. To address the analytic challenges of this new study design, we propose a computational method named BaSiC (B ulk tumor a nd Si ngle C ell), to discern ITH by jointly analyzing DNA-seq data from bulk tumor and single cells. We demonstrate that BaSiC has comparable or better performance than the methods using either data type. We further evaluate BaSiC using bulk tumor and single-cell DNA-seq data from a breast cancer patient and several leukemia patients.  相似文献   
992.
Tree-based methods are popular nonparametric tools in studying time-to-event outcomes. In this article, we introduce a novel framework for survival trees and ensembles, where the trees partition the dynamic survivor population and can handle time-dependent covariates. Using the idea of randomized tests, we develop generalized time-dependent receiver operating characteristic (ROC) curves for evaluating the performance of survival trees. The tree-building algorithm is guided by decision-theoretic criteria based on ROC, targeting specifically for prediction accuracy. To address the instability issue of a single tree, we propose a novel ensemble procedure based on averaging martingale estimating equations, which is different from existing methods that average the predicted survival or cumulative hazard functions from individual trees. Extensive simulation studies are conducted to examine the performance of the proposed methods. We apply the methods to a study on AIDS for illustration.  相似文献   
993.
Lactic acid is widely used in many industries, especially in the production of poly-lactic acid. Bacillus coagulans is a promising lactic acid producer in industrial fermentation due to its thermophilic property. In this study, we developed the first genome-scale metabolic model (GEM) of B. coagulans iBag597, together with an enzyme-constrained model ec-iBag597. We measured strain-specific biomass composition and integrated the data into a biomass equation. Then, we validated iBag597 against experimental data generated in this study, including amino acid requirements and carbon source utilization, showing that simulations were generally consistent with the experimental results. Subsequently, we carried out chemostats to investigate the effects of specific growth rate and culture pH on metabolism of B. coagulans. Meanwhile, we used iBag597 to estimate the intracellular metabolic fluxes for those conditions. The results showed that B. coagulans was capable of generating ATP via multiple pathways, and switched among them in response to various conditions. With ec-iBag597, we estimated the protein cost and protein efficiency for each ATP-producing pathway to investigate the switches. Our models pave the way for systems biology of B. coagulans, and our findings suggest that maintaining a proper growth rate and selecting an optimal pH are beneficial for lactate fermentation.  相似文献   
994.
Excessive osteoclast recruitment and activation is the chief cause of periprosthetic osteolysis and subsequent aseptic loosening, so blocking osteolysis may be useful for protecting against osteoclastic bone resorption. We studied the effect of aspirin on titanium (Ti)-particle-induced osteolysis in vivo and in vitro using male C57BL/6J mice randomized to sham (sham surgery), Ti (Ti particles), low-dose aspirin (Ti/5 mg·kg−1·d−1 aspirin), and high-dose aspirin (Ti/30 mg·kg−1·d−1 aspirin). After 2 weeks, a three-dimensional reconstruction evaluation using micro-computed tomography and histomorphology assessment were performed on murine calvariae. Murine hematopoietic macrophages and RAW264.7 lineage cells were studied to investigate osteoclast formation and function. Aspirin attenuated Ti-particle-induced bone erosion and reduced osteoclasts. In vitro, aspirin suppressed osteoclast formation, osteoclastic-related gene expression, and osteoclastic bone erosion in a dose-dependent manner. Mechanically, aspirin reduced osteoclast formation by suppressing receptor activator of nuclear factor kappa-B ligand-induced activation of extracellular signal-related kinase, p-38 mitogen-activated protein kinase, and c-Jun N-terminal kinase. Thus, aspirin may be a promising option for preventing and curing osteoclastic bone destruction, including peri-implant osteolysis.  相似文献   
995.
This study aimed to examine whether lung tissue extracellular matrix (ECM) hydrogels have protective effects on radiation-induced lung injury (RILI). The cytocompatibility and histocompatibility were tested for the obtained ECM-derived hydrogel. Sprague–Dawley rats were randomly divided into three groups (n = 18): control group (control); rats receiving irradiation and intratracheal injection of normal saline (IR + NS); and rats receiving irradiation and intratracheal injection of lung ECM-derived hydrogel (IR + ECM). The wet/dry weight ratio was used to evaluate the congestion and edema of the lungs. Histopathological analysis of lung tissues was performed using hemotoxylin and eosin staining and Masson's trichrome staining. Immunohistochemical staining and western blot analyses were carried out to determine the expression of epithelial–mesenchymal transition (EMT)-related proteins in lung tissues (E-cadherin, α-smooth muscle actin [α-SMA], and vimentin). In addition, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and interleukin-6 (IL-6), hydroxyproline, malondialdehyde (MDA), and superoxide dismutase (SOD) levels were also evaluated. The ECM-derived hydrogels had good cytocompatibility and histocompatibility. ECM-derived hydrogel treatment improved lung histopathology injury and pulmonary edema. Higher expression of E-cadherin and lower expression of vimentin and α-SMA were found in the IR + ECM group compared with those in the IR + NS group. Hydroxyproline levels were reduced by ECM-derived hydrogel treatment compared with those in the IR + NS group. Obvious increases of TNF-α, IL-6, and TGF-β1 were identified following irradiation. Marked reductions in MDA content and increases in SOD were induced by ECM-derived hydrogel treatment in rats after radiation. ECM-derived hydrogels were shown to protect against RILI, potentially by reducing EMT, inflammation, and oxidative damage.  相似文献   
996.
Esophageal squamous cell carcinoma (ESCC) is the predominant esophageal cancer type in China. The aberrant activation of glioma-associated oncogene homolog1 (Gli1), a key factor in Hedgehog (Hh) signaling pathway, has been found in esophageal carcinoma. Moreover, Yes-associated protein 1 (YAP1), the major mediator of Hippo signaling pathway, has been linked to esophageal carcinoma progression. However, the precise roles and the underlying mechanism of both Gli1 and YAP1 in ESCC are unclear. Here, we found that Gli1 and YAP1 are overexpressed in ESCC and are associated with poor prognosis. In addition, we confirmed that knockdown of Gli1 or YAP1 suppresses ESCC cell growth, migration, and invasion in ESCC TE1 and EC109 cells. Significantly, Gli1 interacts with YAP1 in ESCC cells. Both Gli1 and YAP1 proteins are closely correlated with each other in human ESCC samples. Mechanistically, Gli1 upregulates YAP1 in a LATS1-independent manner. Conversely, YAP1 induces Gli1 by regulating phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Most importantly, we demonstrated that the interaction between Gli1 and YAP1 promotes ESCC tumor growth in vitro and in vivo. Our findings established a novel signaling mechanism by which the interaction between Gli1 and YAP1 promotes ESCC cell growth. This signaling regulation of the tumorigenesis provides a new therapeutic strategy for highly lethal ESCC.  相似文献   
997.
Although much progress has been made in the treatment of gliomas, the prognosis for patients with gliomas is still very poor. Stem cell-based therapies may be promising options for glioma treatment. Recently, many studies have reported that umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) are ideal gene vehicles for tumor gene therapy. Interleukin 24 (IL-24) is a pleiotropic immunoregulatory cytokine that has an apoptotic effect on many kinds of tumor cells and can inhibit the growth of tumors specifically without damaging normal cells. In this study, we investigated UC-MSCs as a vehicle for the targeted delivery of IL-24 to tumor sites. UC-MSCs were transduced with lentiviral vectors carrying green fluorescent protein (GFP) or IL-24 complementary DNA. The results indicated that UC-MSCs could selectively migrate to glioma cells in vitro and in vivo. Injection of IL-24-UC-MSCs significantly suppressed tumor growth of glioma xenografts. The restrictive efficacy of IL-24-UC-MSCs was associated with the inhibition of proliferation as well as the induction of apoptosis in tumor cells. These findings indicate that UC-MSC-based IL-24 gene therapy may be able to suppress the growth of glioma xenografts, thereby suggesting possible future therapeutic use in the treatment of gliomas.  相似文献   
998.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used for over 30 years in NSCLC treatment while its effects are diminished by drug resistance. Therefore, we aimed to study the potential role of UCA1 in the development of chemoresistance against cisplatin. Real-time polymerase chain reaction, western-blot analysis, and immunofluorescence were used to study the involvement of UCA1, miR-495, and NRF2 in chemoresistance against cisplatin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the effect of cisplatin on cell proliferation. Computational analysis and luciferase assay were carried out to explore the interaction among UCA1, miR-495, and NRF2. The cisplatin-R group exhibited lower levels of UCA1 and NRF2 expression but a higher level of miR-495 expression than the cisplatin-S group. The growth rate and half-maximal inhibitory concentration of cellular dipeptidyl peptidase (cisplatinum) of the cisplatin-R group were much higher than those in the cisplatin-S group. MiR-495 contained a complementary binding site of UCA1, and the luciferase activity of wild-type UCA1 was significantly reduced after the transfection of miR-495 mimics. MiR-495 directly targeted the 3′-untranslated region (3′-UTR) of NRF2, and the luciferase activity of wild-type NRF2 3′-UTR was evidently inhibited by miR-495 mimics. Finally, UCA1 and NRF2 expressions in the effective group were much lower than that in the ineffective group, along with a much higher level of miR-495 expression. We suggested for the first time that high expression of UCA1 contributed to the development of chemoresistance to cisplatin through the UCA1/miR-495/NRF2 signaling pathway.  相似文献   
999.
Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by vascular remodeling, endothelial cell (EC) dysfunction, and inflammation. The roles of microRNAs have received much critical attention. Thus, this study was attempted to show the biological function of miR-181a/b-5p (miR-181a/b) in monocrotaline (MCT)-induced PAH. Here, rats injected with MCT were used as PAH models. The expression of miR-181a/b and its effect on PAH pathologies were examined using miR-181a/b overexpression lentivirus. A luciferase reporter analysis was performed to measure the relationships between miR-181a/b and endocan. Additionally, primary rat pulmonary arterial endothelial cells (rPAECs) treated with tumor necrosis factor-α (TNF-α) were employed to further validate the regulatory mechanism of miR-181a/b in vitro. Our results showed that miR-181a/b expression was reduced in PAH, and its upregulation significantly attenuated the short survival period, right ventricular systolic pressure and mean pulmonary artery pressure increments, right ventricular remodeling, and lung injury. Furthermore, the increase of intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) in PAH rats was inhibited by miR-181a/b overexpression. Similarly, our in vitro results showed that inducing miR-181a/b suppressed TNF-α-stimulated increase of ICAM1 and VCAM1 in rPAECs. Importantly, the increased expression of endocan in PAH model or TNF-α-treated rPAECs was restored by miR-181a/b upregulation. Further analysis validated the direct targeting relationships between miR-181a/b and endocan. Collectively, this study suggests that miR-181a/b targets endocan to ameliorate PAH symptoms by inhibiting inflammatory states, shedding new lights on the prevention and treatment of PAH.  相似文献   
1000.
Lack of dopamine production and neurodegeneration of dopaminergic neurons in the substantia nigra are considered as the major characteristics of Parkinson's disease, a prevalent movement disorder worldwide. DJ-1 mutation leading to loss of its protein functions is a genetic factor of PD. In this study, our results illustrated that DJ-1 can directly interact with Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) and modifies the cAMP-responsive element binding protein 1 (CREB1) activity, thus regulates tyrosine hydroxylase (TH) expression. In Dj-1 knockout mouse substantia nigra, the levels of TH and the phosphorylation of CREB1 Ser133 are significantly decreased. Moreover, Dj-1 deficiency suppresses the phosphorylation of CaMKIV (Thr196/200) and CREB1 (Ser133), subsequently inhibits TH expression in vitro. Furthermore, Knockdown of Creb1 abolishes the effects of DJ-1 on TH regulation. Our data reveal a novel pathway in which DJ-1 regulates CaMKKβ/CaMKIV/CREB1 activities to facilitate TH expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号